Content

Introduction of nitriles

Shuttle catalysis

Transfer hydrocyanation

The application of nitriles

The derivatives of nitriles

The synthesis of nitriles

The synthesis of nitriles

Traditional hydrocyanation of alkenes and alkynes

New strategy for hydrocyanation of alkenes and alkynes

Alkene metathesis

New strategy for hydrocyanation of alkenes and alkynes

The examples of shuttle catalysis

Hydrogen cyanide as shuttle catalysis

Catalytic reversible alkene-nitrile interconversion through controllable transfer hydrocyanation

Reversible transfer hydrocyanation of nitriles and alkenes

Selective manipulation of the alkene/nitrile equilibrium

Exploration of hydrocyanation substrate scope

Exploration of hydrocyanation substrate scope

Exploration of retro-hydrocyanation substrate scope

Exploration of retro-hydrocyanation substrate scope

Mechanism of the Transfer Hydrocyanation

Unlocking Mizoroki–Heck-type reactions of aryl cyanides using transfer hydrocyanation as a turnover-enabling step

Traditional Mizoroki–Heck reaction

New approach for Mizoroki–Heck

Transfer hydrocyanation for aryl cyanides

Scope of the intramolecular MH-type reaction

Synthesis of polysubstituted naphthalene compounds

Scope of the intermolecular Heck-type reaction

The application in the coupling reaction

Proposed mechanism

Mechanistic experiments

Mechanistic experiments

Mechanistic experiments

Cooperative palladium/lewis acid-catalyzed transfer hydrocyanation of alkenes and alkynes

Studer, A. et al. J. Am. Chem. Soc. 2018, 140, 16353.

CHD core as reagents for functional group transfer reactions

intermediate

Oestreich, M. et al. Angew. Chem. Int. Ed. 2013, 52, 11905.
Oestreich, M. et al. Org. Lett. 2017, 19, 1898.
Oestreich, M. et al. Angew. Chem. Int. Ed. 2015, 54, 12158.

Oestreich, M. et al. Angew. Chem. Int. Ed. 2015, 54, 1965.

Palladium/lewis acid-cocatalyzed transfer hydrocyanation

Transfer hydrocyanation of various alkenes and alkynes

Transfer hydrocyanation of various alkenes and alkynes

Mechanistic studies

Proposed mechanism

Transfer hydrocyanation of α - and α , β -substituted styrenes catalyzed by boron lewis acids

Oestreich, M. et al. Angew. Chem. Int. Ed. 2019, 58, 3579.

CHD core as reagents for functional group transfer reactions

Transfer hydrocyanation catalyzed by boron lewis acids

	Ph Ph + R H H Lewis a $1,2-F_2C$ 120 °C,	$\xrightarrow{\text{Acid}} \qquad \xrightarrow{\text{Me CN}}_{\text{Ph}} + \\ \xrightarrow{6H_4} \qquad \xrightarrow{Ph} Ph$	Ph Me + Me Ph Ph Ph Ph Ph Ph	h
	4-3a 4-1 R = H R = CH ₃	4-4a	4-5a 4-6a	
Entry	Lewis acid (mol%)	Surrogate	4-4a/4-5a/4-6a	Conv. [%]
1	B(C ₆ F ₅) ₃ (20)	4-1	42:14:44	> 99
2	B(C ₆ F ₅) ₃ (100)	4-1	20:70:10	> 99
3	B(C ₆ F ₅) ₃ (100)	4-2	18:79:3	> 99
4	BCl ₃ (20)	4-2	99:1:0	> 99
5	BCl ₃ (20)	4-1	94:3:3	> 99
6	BCl ₃ (10)	4-2	93:7:0	> 99
7	BBr ₃ (20)	4-2	88:11:1	> 99
8	BF ₃ ·OEt ₂ (20)	4-2	38:62:0	85
9	B(OMe) ₃ (20)	4-2	-	0
10	AICI ₃ (20)	4-1	40:49:11	> 99
11	AICI ₃ (20)	4-2	47:52:1	99

Transfer hydrocyanation of various 1,1-diarylethylenes with BCl₃

Transfer hydrocyanation of trisubstituted alkenes with $(C_6F_5)_2BCI$

Mechanism studies

Stoichiometric NMR experiment

Proposed mechanism

I am very grateful to Professor Shi, Professor Fang and Professor Liu for their encouragement and guidance!

I am very grateful to all the members in our group for their help!

I am very grateful to everyone for listening, and I sincerely look forward to your comments and suggestions!